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Self-avoiding plaquette surfaces with a folding or bending fugacity are believed 
to undergo a "crumpling" transition from a flaccid phase with branched 
polymer characteristics (corresponding to surfaces with a high degree of 
folding), to a "smooth" phase (corresponding to surfaces faith a low degree of 
folding). I develop rigorous techniques in order to bound the free energy of this 
model. In particular, the limiting free energy is proven to be positive for all 
positive values of the folding fugacity. In addition, the existence of a non- 
analyticity in the limiting free energy of a (nontrivial) subclass of surfaces is 
proven. This implies the existence of a phase transition in this model, which I 
conjecture to be from a "flaccid" to a "smooth" phase. 

KEY WORDS: Plaquette surfaces; fugacity; flaccid phase; smooth phase; 
limiting free energy; phase transition. 

1. I N T R O D U C T I O N  

The  s tudy of  l ip id  bi layers,  microemuls ions ,  m e m b r a n e s  and  vesicles in 
chemis t ry  and  b io logy  has  insp i red  several  mode l s  of  self-avoiding surfaces 
in s ta t is t ical  mechanics .  ~1'2'3) A pa r t i cu la r ly  in teres t ing m o d e l  is the pla-  
quet te  surface model ,  which is a m o d e l  of  self-avoiding surfaces in the 
hype rcub ic  latt ice,  cons t ruc ted  by  glueing uni t  squares  (p laquet tes )  a t  thei r  
edges in to  a surface. ~1' 2) These surfaces are  often weighted  with  respect  to 
thei r  vo lume or  wi th  respect  to their  cu rva tu re  (o r  bo th ) ,  and  are  usua l ly  
ca l led  vesicles. 

The b e h a v i o u r  of  vesicles in the  absence  of  bend ing  r ig idi ty  is t hough t  
to  be well unders tood .  In  par t i cu la r ,  if the pressure  difference be tween the 
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interior and the exterior of the vesicle is negative or zero, then the vesicle 
deflates, and is said to be in the "flaccid regime. ''~'4'5'6) In this case, 
numerical work suggests that the vesicle behaves as a branched polymer, in 
the sense that all scaling exponents are those of lattice animals or trees (v) 
(see also refs. 8-12). On the other hand, a positive pressure difference 
between the interior and exterior of the vesicle inflates it into an "expanded 
regime"; the volume of the vesicle scales as the i-power of its area ~1) (see 
also ref. 13). 

These phases can be described as follows: Let v,(m) be the number of 
vesicles of area n and volume m per lattice site in the 3 dimensional lattice. 
The generating function for this model is 

V(x, y ) =  ~ vn(m) xny m (1.1) 
n , m  

where x and y are fugacities conjugate to the area and volume respectively. 
For  every fixed y, the radius of convergence of V(x, y), xP(y), describes a 
curve of non-analyticities in V(x, y) in the (x, y)-plane, each associated 
with a critical limit of (I.1). Fisher et al (1991) (13) have shown that for 
0 < x  <x~(1)  and y ~ 1 , there is a line of essential singularities corre- 
sponding to first order transitions to the "expanded" or "inflated" phase 
(these are also called "droplet singularities", see refs. 14-16. On the other 
hand, if y < 1 and x ,~x~(y), then the vesicle collapses to a "flaccid phase" 
resembling a branched polymer. It is known that the phase boundary here 
behaves as xe~(y)~ y-1/4.(13)These lines of singularities are separated by a 

P multicritical point at y = 1 and x = x ,  (1) in the phase diagram, which 
exhibits itself as a non-analyticity in x~(y). At this point vesicles of the 
same area are uniformly weighted in (1.1) and they resemble branched 
polymers (see ref. 7 for numerical evidence supporting this scenario). 

In this paper I consider a model of self-avoiding surfaces with bending 
rigidity (or a curvature energy). The limiting phase of surfaces with high 
rigidity is believed to be a phase of smooth surfaces (such as disk-like or 
cube-like surfaces) which may be reminiscent of the inflated phase encoun- 
tered in the case of positive osmotic pressure in vesicles (see ref. 2 for 
numerical evidence). In addition, there is evidence that at low rigidity one 
recovers a crumpled phase resembling branched polymers. It is conjectured 
that a multicritical point separates these phases. At this point the inflated 
regime goes though a "crumpling transition" to the "crumpled phase." 
There is some dispute in the literature whether this is a critical point, or 
whether there is a cross-over from one regime to the other, without critical 
behaviour, see for example refs. 2, 5, and 17. 

In this paper I apply rigorous methods to surfaces with bending 
rigidity. My objective is to establish rigorous results describing the limiting 
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free energy of surfaces with a bending rigidity. In Section 2 the com- 
binatorial properties of self-avoiding surfaces with a prescribed number of 
folds or bends are studied. In particular, if sn( <~ en) is the number of sur- 
faces with area n and at most en folds, then limn ~ o~(log s,,( <~ en)/n = log rio(e) 
exists and is concave and continuous for e e [ 0, 2 ]. In Section 3 1 consider the 
statistical mechanics of surfaces with bending rigidity. A fugacity conjugate 
to the number of folds is introduced and I prove the existence of a limiting 
free energy. The most interesting result in this section is a bound which 
shows that the limiting free energy is non-zero for every finite value of the 
folding fugacity, even though numerical simulations seem to indicate that 
it approaches very close to zero for finite values of the folding fugacity. (2~ 
In Section 4 I consider a restricted model of surfaces. In this model small, 
isolated, "excitations" are suppressed. I prove that there is a transition at 
a finite value of the folding fugacity in this model. I conclude with some 
remarks in Section 5. 

2. COMBINATORIAL  PROPERTIES OF SURFACES 

In this section the combinatorial behaviour of surfaces with a prescribed 
number of folds is studied (see 2.1 for definitions). I prove bounds on the 
number of surfaces, and these establish bounds in the asymptotic limit of 
increasing area. For  related methods, see refs. 1, 13, 18-24. 

2.1. Definitions 

A plaquette is a unit square with corners (vertices) which have integer 
coordinates in the cubic lattice. The boundary of a plaquette is the union 
of 4 unit line segments called edges. The e-neighbourhood of a vertex v is 
the open ball B~(v) e ~3 with centre v and radius e. Let S be a non-empty 
set of plaquettes; then the vertex v ~ S is occupied once if the set ( S -  v) c~ 
B~(v) is connected for arbitrarily small e > 0 .  S is a lattice surface (1) if 
every vertex v ~ S is occupied once, (2) if every edge in S is incident with 
at most 2 plaquettes and (3) if S is connected. The boundary of S is the set 
of all edges incident with exactly one plaquette. If the boundary of S is 
empty, then S is closed. I shall focus the discussion on closed surfaces with 
the topology of a sphere: In other words, if S is composed of n plaquettes 
and contains v vertices, then by Euler's theorem, v -  n = 2. A foM in S is 
an edge incident with 2 plaquettes which are at right angles to each other. 
The volume of a closed surface is the number of unit cubes in its interior. 
If a surface is composed of n plaquettes, then its area is n. Note that the 
maximum number of folds in a closed surface of area n is 2n, since every 
plaquette is incident with 4 edges, and each edge is incident with 2 plaquettes. 
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The bottom and top plaquettes of a closed surface are the first and last 
plaquettes in an increasing lexicographic ordering of the plaquettes by the 
coordinates of their barycentres. If t is the first direction in the cubic lattice, 
then it can be shown that the top and bot tom plaquettes are normal 
to ~.(18) 2 

2.2. U p p e r  Bounds  

Two surfaces are distinct if they cannot be made identical by a transla- 
tion in the cubic lattice. Let s,(l) ,  where 0 ~< l ~< 2n, be the number of distinct 
surfaces with n plaquettes and I folds. Let st, = 52t~>0 sn(l) be the number of 
surfaces with area n. 

An upper bound on sn can be found as follows: I construct all 
possible closed surfaces by recursively adding plaquettes to a boundary. 
Put  down a plaquette in the cubic lattice in one of three possible orien- 
tations, and label this plaquette with 1. Order the edges of this plaquette 
lexicographically with the coordinates of their midpoints, and append 
plaquette 2 to the lexicographic least labeled edge of plaquette 1, and 
then continue with the remaining edges of plaquette 1 by adding pla- 
quettes 3, 4 and 5 in lexicographic order. Once j plaquettes have been 
added, let i be the smallest label such that plaquette i has an edge not 
paired with another plaquette. Order the unpaired edges of i 
lexicographically and append plaquettes j +  1, j+2, . . . ,  to these in order. 
Repeat this process until n plaquettes have been labeled. At each step in 
the construction there is a unique edge to append the next plaquette, 
which may be added in one of three possible orientations. Thus, the 
maximum number of surfaces that one may construct in this way is 3 n. 
(Note that only a subclass of surfaces, which includes all closed surfaces, 
can be constructed in this way. This bound is cited in ref. 25 and is 
originally due to Ginibre et  al.(26)). 

Let a be a closed surface. Label the bot tom plaquette of o- with 1, and 
order its edges lexicographically. The plaquette incident with the least edge 
gets label 2, and the plaquette incident with the next least edge gets label 3, 
and so on. If j plaquettes have been labeled, and i is the least label so 
that plaquette i is incident with an unlabeled plaquette, then order the 
edges of i incident with unlabeled plaquettes lexicographically, and label 
the plaquette incident with the least edge with j +  1, etc. This gives a 
canonical labeling for the plaquettes of a, and gives the order whereby one 

2 The unit vectors in ~3 will be taken as f, j and/~. The first direction will be f, the second 
] and the third/~. A lexicographic ordering of points in ~3 will be with respect to these lattice 
directions in order, unless explicitly stated otherwise. 
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can add plaquettes starting at the bo t tom plaquette to construct a as 
above. Hence 

sn~<3 n (2.1) 

I can find a bound on sn(l) by using the same process as above: If  i is the 
smallest label with an unpaired edge, let j + 1 be the next plaquette to be 
added incident to i. There is a choice between (1) adding plaquette j + 1 at 
right-angles to i (in one of 2 ways), creating a fold, or (2) adding plaquette 
j +  1 with the same orientation as i. This process is repeated at most  n 
times, and one can create a fold at k of these in (~) ways. The max imum 
number  of ways that a surface can be created in this way is (~) 2 ~. But note 
that a surface with I folds can be created by choosing k ~< l from the n pla- 
quettes for creating a fold. Thus 

k~<l  

Observe that this bound equals 3 n if 1= n, thus the best bound on sn(1) if 
l ~> n is given by (2.1). 

2.3. Concatenat ion and the Limit ing Behaviour of s .  

Suppose that cr and r are two closed surfaces, and let the top plaquette 
of tr be t ,  and the bo t tom plaquette of z be b~. Translate a such that 
t ,  + t= b~, (the top and bo t tom plaquettes are always normal  to the unit 
vector t). A new surface can be constructed from z and a by deleting t~ 
and b~, and then adding 4 plaquettes as illustrated in Fig. 1 to connect 
and ~ into a closed surface tr | r. If  a has area n and z has area m, then 
~r G T has area n + m + 2. Note  that at least 2, and at most  4, of the edges 
of any bo t tom or top plaquette are folds. Some of these may disappear 
when the concatenation is performed, and new folds may be created. 

A case analysis shows that the total number  of folds may change by 
0, ___2 or + 4  when two closed surfaces are concatenated. (There are 9 cases 
in total, since the number  of folds on the top and bo t tom plaquettes may  
take values 2, 3 or 4. For  example, if the number  of folds in the edges of 
t~ is 2, and in b~ is 3, then the concatenation removes these folds, but create 
2 new folds in the edges of t~ and 1 new fold in the edges of b~. Together 
with the folds in the 4 new plaquettes, this gives a change of + 2 in the 
total number  of folds. The other cases can be checked similarly.) This con- 
struction implies that the number  of surfaces are supermultiplicative: If  a 
closed surface with area n and k folds, is concatenated with a closed surface 



182 Janse van Rensburg 

R I "-ii!i!i!i  -I 

.... % . . . .  

~ b- 

Fig. 1. Concatenation of two surfaces. 

with area m and l folds, then a unique closed surface, with area n + m + 2 
and at least k + l - 4  or at most  k + l + 4 folds, is the result. Hence 

2 
sn(k) Sm( l )~  ~,, Sn+m+2(k+l-Jc-2j) (2 .3)  

j= 2 

SnSm ~Sn+m+ 2 (2.4) 

Since s,  is bounded by an exponential in (2.1) there exists a constant/~o > 0 
such that 

logf l0= lim 1 logsn (2.5) 
n ~ c o n  

and moreover,  s ,  ~< ~g + 2.(27, 28) /~0 is called a growth constant, and by (2.1) 
flo ~< 3 (see ref. 25). A numerical estimate for the growth constant is/~o = 
1.733 _+ 0.006. (8 10) 

2.4. C r u m p l e d  S u r f a c e s  

The number  of folds in a surface is the degree of  crumpling of that 
surface. Let sn(~<l) =Zk~<lsn(k) be the number  of surfaces with at most l 
folds. Then s,(<<.en) is the number  of  surfaces with at most  en folds, where 
e can take values in (0,2]. Lower bounds on sn(<~en) can be obtained for 
infinitely many  values of n in the following proposition: 
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Proposition 1. (1) For  any m~>l and every e e ( 0 , 2 ] ,  there 
exists a finite positive integer qo(e) such that for every fixed q > qo(e), 

S6mq 2 2(m-- 1)( <~rr[6rnq 2 --2(m -- 1) ] ) />4  '~-1 

(2) For  every positive e < 3 

$6q2 +4 Leq2/( ~ 12(q + eq2)) ~> / (6  L(q 2)2/4_]~ 

Leq2/ J \ 

Proof. (1) I construct a family of surfaces of area n = ( 6 m q  2 -  
2 ( m - 1 ) ) ,  and with fewer than en folds. A q-cube is a surface of area 6q 2, 
and with the geometry of a cube with side-length q in 3 dimensions. The 
degree of folding in a q-cube is 12q. A top plaquette t + + and a bot tom pla- 
quette b + + of a q-cube can be found by a lexicographic ordering of the 
barycentres of the plaquettes with respect to the directions (f,j,/~). 
Similarly, if the lexicographic ordering is done with respect to the direc- 
tions (f, - ] ,  -/~), then the top and bot tom plaquettes t and b are 
found instead. Lastly, if the ordering is done with respect to (f, ], -/~), then 
the top and bottom plaquettes are t + -  and b + - ,  and if the ordering is 
done with respect to (f, -] , /~) ,  then t + and b + are the top and bot tom 
plaquettes. These top plaquettes (and the bot tom plaquettes) are distinct if 
q > 1. Two q-cubes can be "stringed together" (if q > 1 ) by identifying either 
t + + on the first with b + + on the second, or t - -  on the first with b - -  on 
the second. Alternatively, one can identify t + -  with b + - ,  or t -  + with 
b - + .  If m such q-cubes are stringed together, then there are 4 m 1 possible 
conformations. Each identification deletes two plaquettes from the q-cubes, 
but the number of folds are preserved. The total area is 6rnq 2 -  2 ( m -  1), 
and the total degree of folding is 12mq. Thus, S6mq2 2(m 1)(12mq)t> 4 m- 1. 
Now increase q (if necessary), until e > 12q/6q2-2.  Since 12q/6q2-2>~ 
12mq/6rnq 2 -- 2(m - 1 ) for any m ~> 1, this value of q is sufficient (put qo(e) = 

[-1/~ + ~ / l / e  2 + 1/2q). 

(2) On the other handed a 1-cube can be "fused" on the outside of 
a q-cube by identifying a plaquette on the 1-cube with a plaquette in the 
q-cube, and then deleting the plaquette (as illustrated in Fig. 2). Perform 
this construction by selecting l plaquettes disjoint with folds and with each 
other in the q-cube. This can be done in at least (6L(ql2)2/4j) ways. By 
counting the number of folds and plaquettes, the resulting surfaces have 
degree of folding 12q + 12/, and area 6q 2 + 4l. Thus, S6q2 + 4~( <. ( 12(q + l))) ~> 
(6 L(q/2)2/4J). NOW put l = LeqZJ, and the result follows. | 
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Fig. 2. 

Q 

A q-cube with 1-cubes fused to its outer surface. 

The construction of concatenating surfaces preceding and leading to 
Eq. (2.3) shows that 

2 

Sts(~k) Sm(~l)~ 2 S.+m+Z(<~(k+l+2j)) ( 2 . 6 )  

j = - 2  

The maximum is obtained if j = 2  in the sum above; this gives the 
inequality 

s,,( ~ k )  s,,( <~l) ~ 5Sn+m+ 2( <~(k + l + 4)) (2.7) 

If k = en and l =  din, then (2.7) becomes 

s,( <.en) Sm( <~ dm) <~ 5Sn+m+2( ~< (en + 6m + 4)) (2.8) 

and by putting e = d it shows that 1 ~s,, + 2( <~ (en - 4)) is a supermultiplicative 
function of the kind considered by Wilker and Whittington (1979)/28) 
Together with the bound in (2.1) this gives: 

Proposition 2. There exists a function flo(e) defined for every 
eE(0, 2] such that 

lim 1 log s,,(<~en) = log flo(e) 
n ~  <z3 n 

If we let n = m  in Eq. (2.8), then 

sn( <<. en) sn( <<. 6n) <<. 5s2,, + 2( ~< (e + 6) n + 2) (2.9) 
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Take the logarithm of (2.9), divide by n, and let n + oo; this proves that 

log rio( e ) + log rio( CS ) <... 21og rio ( ~ ) (2.10) 

Thus log ri0(e) is a concave function of e, and is continuous in (0, 2). rio(e) is 
defined for e ~ (0, 2], but its domain can be extended to [0, 2] by defining 
ri0(0) = l im~0§  rio(e). The following inequality is proven in ref. 21, and it 
will be useful in the proof  of Proposition 3: Let q be a finite positive real 
number, then if 0 ~< y ~< q/q + 1, 

i q 1 Z qk<~ (2.11) y (1 

The following proposition is a summary of the properties of rio(e): 

Proposit ion 3. logrio(e) is a concave function of e, and is con- 
tinuous for e~ [0, 2]. Moreover, rio(2)=rio and lim,:~ o§ rio(e) =rio(O)= 1. 

Proof. By Eq. (2.10), logri0(e) is concave in (0, 2], and thus con- 
tinuous in (0, 2). To prove continuity at e = 2, note that Eqs. (2.8), (2.9) 
and (2.10) are valid even if e ~> 2. Thus rio(e) is continuous at e = 2  (and 
obviously, ri0(2)=rio). Thus ri0(e) is continuous in (0, 2]. It remains to be 
shown that lim~.~0+ rio(e)= 1. The limit exists, since rio(e) is a monotone 
function in (0, 2]. By Proposition 1(1), for every e > 0  there exists a fixed 
number q > 0  such that Sn(~g.n)~/4(n-2)/(6q2-2)>l for infinitely many 
values of n. Thus lim~.~0+ rio(e) ~> 1. Otherwise, use Eq. (2.2): s,(<~en) 

n 1 is sufficient), the sum over k can Z ~ . n  Z~_<~ (k) U, then for small e (e ~< 
be bounded from above by (l + 1 )(~) 2 l, since the maximum is obtained by 
putting k -- l. Thus sn( ,.< en) ~< ~_<~n ( l+  1)(~) 2~< (en + 1) 52t.<~n (~) 2( The 
sum over l can be bounded from above by using (2.11): 

I 2~ 1 n 
s,( <<.en) ~ (en + 1) [e~( 1 _ ~ ) l - ~ j  

provided that 0 ~< e ~< 2, so that rio(e) <~ 2~/e~( 1 - e) 1 e. As one takes e --+ 0 +, 
the result is lim~ ~ o+ rio(e) ~< 1. Now define rio(0) = 1 = lim,: ~ 0 + rio(e). This 
proves the proposition. ] 

Remarks. By Proposition 1, rio(2) > rio(0) = 1. Since rio(e) is continuous 
and non-decreasing for e ~ [0, 2], there exists an ec ~ (0, 2] such that rio(e) = 
,6o(2) Ve ~> ec. I plot the expected behaviour of rio(e) in Fig. 3. Bounds on 
rio(e) for small e can be derived from Proposition 1(2), and from the proof of 
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log o 

logfl0(E) 

0 
0 (~e 

Fig. 3. The expected behaviour of log flo(e). 

Proposition 3: By Proposition 1(2) limq~ ~ 1/6q 2 log $6q2 +4 Leq2j( ~ 12(q + eq2)) 
~>limq 1/6q 2 log(6 L(q 2)2/4A~ implies that (provided that e < 3) ov Leq2j ! 

2~ 1 + 2/3e 1/41/4 (, 
Taken together with the upper bound derived in the proof of Proposition 3, 

27 1/24 2 ~ 
[e~(3 -'~-)( 3 ~)] <<.flo(e)<<.e~(1 _ e ) l _  ~ (2.12) 

where the lower bound is valid if e ~< 2, and the upper bound is valid if 
e < 1. An immediate consequence of these bounds is that (by the squeeze 
theorem for limits) 

d+fl~ = lim f l~176  oe (2.13) 
de e=o e~O+ e 

Thus the graph of log flo(e) in Fig. 3 approaches the point (0, 0) with 
infinite gradient. 



Crumpling Self-Avoiding Surfaces 187 

3. THE STATISTICAL MECHANICS OF CRUMPLING 
SELF-AVOIDING SURFACES 

A model of "crumpling surfaces" is defined by the introduction of a 
"folding fugacity" z conjugate to the degree of folding. This is the model 
which was considered by Whittington, ~) and Orlandini et al. (1995), ~2) and 
one may consider it to be a discrete approximation to surfaces with a cur- 
vature energy. The main results in this section are a set of bounds on the 
free energy; these are derived using the results in Section 2. In particular, 
I prove that the free energy is always positive, for any finite value of the 
fugacity. This settles a question raised in the numerical study by Orlandini 
et al. (1995) ~2) which suggests that the free energy approaches very close to 
zero for finite values of the fugacity. 

3.1. Free Energies 

The thermodynamic behaviour of a self-avoiding surface is completely 
described by its free energy. Let 

2n 

6n(z)  = Y~ s~(l) z '  (3.1) 
/ = 0  

be the generating function of surfaces of area n, with fugacity z conjugate 
to the degree of folding in the surfaces. (This is the canonical partition func- 
tion or the "folding generating function"). The free energy per plaquette, 
F,(z),  is defined by 

F,(z)  = 1 log G,(z) (3.2) 
n 

The existence of a limiting free energy (as n--+ ~ )  was proven by Whit- 
tington; (1) this is a direct consequence of the generalised supermultiplicative 
relation Z ~ - 0  sn( l -  k ) sin(k) ..~-< ~',j=2 -2 s~ +m + z( l + 2j), which one obtains in 
the same way as (2.6). 

Proposition 4 (Whittington, 1993(1)). There exists a function ~ ( z )  
for every z ~ [ 0, oo) such that 

~ ( z )  = lim Fn(z)--- lim -1 log Gn(z) 

Moreover G,(z)~<(~2=_ 2 zZJ)[~-(z)] "+2, and ~-(z) is a convex function 
of log z and therefore continuous for z ~ (0, ~ ) .  

822/88/1-2-14 
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I will also show that ~ ( 0  + ) = 0 at the end of this section. A second 
generating function for this model is the so-called "grand canonical parti- 
tion function," which is defined as 

2n 

z  .,(ztxo (331 
n = 0  1 = 0  n = 0  

If one compares (3.2) and Proposition 4 with (3.3), then e -.~(z) =Xc(Z ) is 
the radius of convergence of the infinite series in x defining G(x, z). Thus, 
one merely needs to study xc(z) in order to derive properties of ~ ( z ) .  
Under some circumstances this will prove more suitable than working 
directly with the limiting free energy, but in other cases. I shall work 
directly with the limiting free energy ~-(z). 

3.2. Bounds on ~ ( z )  if z~> 1 

An upper bound is obtained with relative ease: Note that Gn(z)= 
Y,I sn(1) zt<~ sn ~2"= o zl<~ 2nsnz 2~ since z 1> 1. By taking the logarithm of this 
inequality, dividing by n and letting n ~ ~ ,  (and using (2.5)) 

i f ( z )  ~< log flo + 2 log z, provided that z ~> 1 
(3.4) 

~ ( 1 )  = l o g  fl0 

A lower bound is more difficult. In this case one can construct a subset of 
surfaces by using "blocks" such as illustrated in Fig. 4. 

The block in Fig. 4 has width equal to 5, area n = 78 and degree of 
folding l = 2n = 156. In general, if the width of a block is p (where p is odd), 
then it has area 3(p2+ 1), and degree of folding 6(p2+ 1). One can join 
these blocks together, as illustrated in Fig. 5, by identifying rightmost and 

Fig. 4. A block wi th  a rea  n = 78 a nd  l =  2n = 156folds .  
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Fig. 5. A cross-section of a site tree generated by glueing together the blocks in Fig. 4. The 
vertices are separated by 5 units. 

leftmost plaquettes. The number  of  ways that  this can be done is related to 
the number  of  site trees in a sublattice of  ~ 3  as follows: Let the midpoin t  
of  each block be a vertex in a site tree on the dual lattice of  ~3 ,  and let 
two vertices be adjacent if the corresponding blocks are joined. The length 
of  the edge between these vertices is p,  and the number  of  different ways in 
which q blocks can be joined into a surface is tq, the number  of  site trees in 
~ 3  with q vertices. Each  time that  two blocks are joined, 2 plaquettes are lost, 
as well as 8 folds. Thus, in a surface built f rom q blocks, the area is n = 
3(p 2 + 1 ) q - 2(q - 1 ) = (3p 2 + 1) q + 2 and degree of  folding l = 6(p 2 + 1 ) q - 
8(q - 1) = (6p 2 - 2) q + 8. Hence, G(3p2 + 1) q+2(Z) ~ tqZ (6p2-2) q+8. F i x p  and 
let q ~ 00. Then n ~ ~ ,  

~ ( z )  ~> lim log tq q- log z 
q ~  ( 3 p 2 + l ) q + 2  ( p ) q + 2  

(3.5) 

The number  of  site trees in three dimensions is k n o w n  to be t - - A  q+~ q - - - ~ s  
(see ref. 29 for a p roo f  of  this in 2 dimensions; this can be readily adapted  
to 3 dimensions),  where As >~ 3 is the g rowth  cons tant  of  site trees. (This 
b o u n d  is seen by not ing that  the number  of  self-avoiding walks, with steps 
only in the positive lattice directions, grows as 3n). Consequently,  f rom 
(3.5): 

6p 2 -- 2 
i f ( z )  >~ log A~ + ~ log z, for odd  p >~ 1 provided that  z >/1 

(3.6) 

If p = 1 in (3.6),  then ~ ( z )  i> log 3/4 + log z, and if p ~ ~ in (3.6),  then 
~ ( z ) / > 2  log z. 3 N o  improvement  is gained f rom other  values of  p; one 

Note that p = 1 corresponds to a "deflation" of the surfaces, and that the surfaces "inflate" 
as p ~ co. The bound (log 3/4) + log z can be improved with better lower bounds on A s. 
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can show that all the lines defined by y = ( l o g  3/3p2+ 1 ) + ( ( 6 p 2 - 2 ) /  
(3p2+ 1)) log z intersect in the point (log 3/4, 2 log 3/4). Thus 

I 
log 3 3 
- - - ~  + log z, if 0~<logz~< l~ 

~-(z ) ~> 

2 log z, if log z ~> log3 
4 

(3.7) 

3.3. 

that 

Bounds  on ~ ( z )  if z~<l  

Since G,,(z) is a monotonic increasing function with z, (3.5) implies 

~ ( z )  ~< ~-( 1 ) = log fl0 Vz ~< 1 (3.8) 

Consider Xc(Z), the radius of convergence of the generating function G(x, z) 
(Eq. (3.3)). The following proposition gives upper bounds on x~(z): 

P r o p o s i t i o n  5. For every z ~ [0, 1 ]: 

xc(z ) <~ min{ 1, flolZ -2} 

and thus xc(z) < 1 if x/~0 - l ~< z ~< 1. 

Proof. Note that G(x, z) >1 Zn ZI>~O~" s.(1) ztx" >~ Z .  Zt>~o~" s.(l) z~"x" ~.> 
Z.s.(<~en)z~"x ". But by Proposition 2, s.(<~en)=[flo(e)]"+~162 so 
G(x,z)>~Z.[flo(e)]"+~ ". The radius of convergence of the last 
series is an upper bound on Xc(Z), thus 

Xc(Z) < [Po(~)] -1 z-~ 

Now take e ~  0 to obtain xc(z)~ 1. Alternatively, bound G(x, z) from 
below as follows: G(x, z) >~ Zn ~t>~o2n sn(l) z2"x ~, since z ~< 1. Thus G(x, z) >~ 
Zn s. z2nx~, and the radius of convergence of this last series is likewise an 
upper bound on Xc(Z). By Eq. (2.5) 

xc(z) <Po~Z -2 

This bound is better that the first if x/~01 ~< z ~< 1, otherwise the first is 
better. ] 

Does xc(z) ever become equal to 1 for finite z? Since it is a monotonic 
non-increasing function this will imply that it (and thus ~-(z)) has a non- 
analyticity. This non-analyticity would signal a phase transition between 
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the "flaccid" (branched polymer) regime, and a phase of "smooth" surfaces 
(where the generating function G(x, z) is dominated by surfaces with low 
degree of folding). This in fact does not happen: I prove in Proposition 6 
that xc(z)< 1 for all z. This does not rule out a non-analyticity in if(z) .  
The proof for this depends on the lower bound in equation (2.12), which 
was derived by considering the surfaces illustrated in Fig. 2. 

Proposit ion 6. For every positive z ~< 1, xc(z) <<. e 224/8e <[ 1. 

Proof. Let z~<l. Observe that G ( x , z ) > ~ = o ~ l ~ , s ~ ( l ) z l x " > ~  
2~,~=o s,( <<. en) z~nx" = 5Z,~ 0 [fl0(e)] "+~ z~"x ~. Thus (by using the bound 
in (2.12)) 

[ 2 7  ]n/24+o(n) 
n Z O  L z e n x n  G(x,z)~> = e~( 3 - e ) ( 3  ~)j 

if e ~< 2. The factor in the square brackets above is bounded from below by 
3/e. Hence 

Xc(Z) ~ (e/3"~ ~/24 \~-~j  < 1 if e < 3Z 24 

Thus, for every positive z ~< 1 there exists such an e > 0. The minimum 
upper bound is derived by taking d/de(e~24 log(~/3/z24)) -- ~4 + ~ log(e/3/ 

�9 z24/8e z 24) = 0. This gwes the upper bound e on x~(z), for z e [0, 1 ]. I 

The bounds in Propositions 5 and 6 translate into lower bounds on 

~ log flo + 2 log z 
~-(z)/> ~z 24 

k-fie 

if - 0 . 275 . - -  ~<logz~<0 

if logz~< - 0 . 2 7 5 . . .  
(3.9) 

The two lower bounds on ~ ( z )  are equal if log z ~ -0.275;  if log z is larger 
than this number, then the first bound is better, otherwise the second 
bound is better. 

A lower bound on xc(z) is found by writing G(x, z) as the sum of two 
terms which will be bounded from above: 

2n 

G ( x , z ) = Z  Z s#(1) ztx # = Z  Z s.(1) z%'*+~. ~. 
n l = 0  n l<~en n l > e n  

~<,~ ~ ( ~  ( k )  2 ' ) z ' x ' + ~  ~ s.(1) z'x" 
l<~en k<~l n l > e n  

s.( l) ztx n 

(3.10) 
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1 The following bound will where (2.2) was used, and where I will put e = 5. 
prove useful: 

I . e m m a  7. Let n > 1 and l be integers such that 0 < l < n. Then 

ll(n _ l)(, -l) <~ 11-----0 

Proof. Use the Stirling approximation to k!: For  every k/> 1 (see for 
example Buck (1965)(3~ 

k%_-Z-n/~- ~ 1 ~11~ 

Hence 

11 e k k k 11 e k 

If these bounds on k ~ are substituted in n ' / l~ (n - l )  ~'-l) for k = n ,  l and 
( n -  l), then the upper bound is proven. I 

The second term in (3.10) is bounded as follows: 

~ s,(l)zZx"<~ 2 n -  3nznl2x" by (2.1) (3.11) 
n l> Ln/2J 

which is finite if x < 1/3 v/~. The first term requires somewhat more work; 
and the use of Lemma 7: 

E 
n 

~E E llnlil,(l_lln)~l ,I,,) z'x", 
n I = 0  

Ln/2J nn  
=Z Y 

n l = 0  

~<E i N  x/n (2zlXx", 
n l = 0  

72 
~ - - . ~  ~d/n (1 + 2z)" x '~ 

110 
n 

since I ~< ; ,  and by (2.11 ) 

by Lemma 7 

(3.12) 
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which is finite if x <  1/1 +2z. Thus, by comparing (3.11) and (3.12), the 
following lower bound on xc(z ) is obtained: 

Proposition 8. xc(z) is bounded from below in [0, 1 ] as 

Hence; 

, i f  
+ 2z' 

~ log3+�89 if �88 
~ ( z )  ~< [log(l  + 2z), if 0 ~< z ~< 1 

(3.13) 

3.4, Remarks  

The bounds derived in this section are plotted in Fig. 6 against log z. 
Note that ~-(z) is asymptotic to Co + 2 log z ifz > 1, where Co is a constant 
between 0 and log flo,~0.550. For log z <0 ,  it is asymptotic to 0. These 
results have implications for the average degree of folding in the n ~ oo limit: 
This is defined as l im.~ o~(l)/n -- l im.~ o~ d/(dlog z)(1/n) log G.(z) (if this 
limit exists). Since (1/n) logG.(z) is a sequence of convex functions 
(Proposition 4), and the limit of this sequence is a convex function ~-(z), 
it follows that (d-/d log z) ~ ( z )  ~< lim inf. ~ oo(d-/d log z)(1/n) log G.(z) 
~<lim sup .~  o~(d+/dlog z)(1/n) log G.(z) <~ (d+/dlog z) ~(z) .  ~31) With in- 
creasing z, the left- and right-derivatives of ~-(z) approach 2, and the 
average degree of folding is 2 in the limit. Similarly, if z approaches 0, then 
the average degree of folding is 0 in the limit. (In other words, I can only 
show that the limit defining the average degree of folding exists if z = 0 
or if z ~  oo.) Numerical simulations [2] suggest that xc(z)(=e -~z))  
approaches very close to 1 for modest values of z. In particular, xc(0.635) = 
0.987+0.010. This is slightly smaller than the upper bound proved in 
Proposition 6, which predicts that xc(0.635)~<0.99999915 .... This upper 
bound is due to inflated surfaces (those in Fig. 2) with isolated folds 
exploring a large smooth surface area. In this regime, it seems that the 
limiting theory is one of inflated surfaces, even though a limiting theory of 
"disk-like" surfaces was suggested by Orlandini et al. (1995). (2) For larger 
values of z the upper bound on xc(z) is given by (3.7), and these are due 
to the "tree-like" surfaces as in Fig. 5. Here it seems likely that the limiting 
theory is a theory of branched polymers. However, there is a qualification 
which must be taken into account: The bound for large values of z is 
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logBo + 2 l ogz / /  ,/,/ 

/ 1: 
2 // ~/ 

/ "  "l'~ig z 

1 

./ / 

log 3 + Lo~ ~ log/~0 
/ . . .m- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .11 

l~ z). .......... ..*'" ~ " , - " ~ -  + log z 

�9 ": - -  . . . . . . . . . . . . . . . .  ~ I , 
-1 -0 .275. . ,  0 1 log z 

Fig. 6. .~(z) as a function of log z. 

derived by taking p--+ oo in (3.6), thus "inflating" the surfaces which are 
schematically illustrated in Fig. 5 (this is only done after the n ~ oo limit 
is already taken). This inflation has no effect on the branched polymer 
character of the limiting theory. (Thus, the limiting theory, for large z, 
could be described as one of inflated, branched surfaces.) It is conjectured 
that these phases are separated by a multicritical point. The nature of the 
singularities on G(x, z) (as x ,~ xo(z))  is not clear: A collapse to smooth sur- 
faces at small values of z (as x ~ xc(z))  may be expected to be a first order 
transition (in analogy with the results obtained for 2 dimensional vesicles 
by Fisher et al. 1991). (13) on the other hand, the collapse (for larger values 
of z) to the branched polymer phase is conjectured to be continuous. If this 
is indeed the case, then the multicritical point separating the two limiting 
phases is tricritical as suggested by Orlandini et al. (1995). (2) Lastly, note 
that l im~0+ ~- (z )=0 ,  and thus ~ ( z )  is continuous for z ~ [ 0 ,  oo), as 
promised in the first line after Proposition 4. 

4. A C R U M P L I N G  T R A N S I T I O N  IN A RESTRICTED SET OF 
S U R F A C E S  

Let a be a surface with area n and degree of folding L. The skeleton 
(or frame) of a is the set of all edges which are folds in a. In general, the 
skeleton of a surface is a set of lattice animals. Some surfaces have a 
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connected skeleton, such as a q-cube, or the block in Fig. 4, but many sur- 
faces have skeletons which are not connected, such as the example in Fig. 2. 
Let sC(1) be the number of surfaces with a connected skeleton, with area n 
and degree of folding /. By using the same constructions as in Section 2, 
one can show that 

lim -1 logsC(<~en)=logflC(e),  for every ~ [0, 2] (4.1) 
n ~ o o n  

Moreover, logflC(e) is a concave function of e, is continuous in [0, 2], 
monotonic non-decreasing with e and t ic (0)= 1 (this is seen from Eq. 
(2.12) and Proposition 1(1)). Also note that fl~'(2) ~<f10(2). A lower bound 
on tic(e), for small values of e, cannot be derived from Proposition 1(2), 
since that involves surfaces with skeletons which are not connected. One 
can also improve on the upper bound in (2.12) as follows: observe that any 
surface with a connected skeleton and degree of folding l can be mapped 
into lattice animals weakly embedded in the cubic lattice, with l edges (to 
see this, remove all plaquettes from the surface, and just leave behind its 
skeleton). Suppose that 0~ is a lattice animal with the property that every 
edge in ~ is in a planar (2 dimensional) polygon. Then one may attempt 
to convert a into a closed surface by filling in the planar polygons with 
planar sheets of plaquettes. About every edge in ~ there are potentially 4 
possible directions for adding the sheet of plaquettes. If there are az animals 
with l edges, then this implies that 

sO(l) <~ 4'a, (4.2) 

where az is the number of lattice animals of size l. Consequently, 

fl~'(e) <~ (42) ~ (4.3) 

where 2 is the growth constant for lattice animals in the cubic lattice. (29) 
The function fig(e) has many of the same properties as flo(e), as noted 
above, but it differs in one important respect: it does not approach 1 as 
e ~ 0  with infinite slope, as implied by Eq. (2.13). In fact, it seems to 
approach 1 with finite slope as e ~ 0, since by (4.3) and since tic(e) is 
monotonic non-decreasing 

0 <~ lim inf log fl0c(e) - log fl~'(0) 
e ~ 0  + 8 

~< lim sup log fl~'(e) - log fl0c(0) ~< log(42) (4.4) 
e ~ 0  + 8 
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Thus, the right derivative exists and it is finite, as opposed to the situation 
described in Fig. 3 and Eq. (2.13). 

4.1. Free energies  

The generating functions for this model are: 

C2(z) = Z s2(t) z' 

l (4.5) 
GO(x, z) = F, G.(z)C x" 

n 

The existence of a limiting free energy per plaquette, ~ and its con- 
vexity and continuity follows by the same methods as in Section 3. Note 
that ~ <<, :(z) ,  so that every upper bound on ~,~(z) is an upper bound 
on :C(z). Moreover, the lower bounds in (3.6) are also lower bounds on 
:C(z), since the blocks in Fig. 4 and the surfaces in Fig. 5 have connected 
skeletons. 

By Proposition 1(1) it is apparent that :C(z)> 0 if z >  1, since the 
class of surfaces constructed in that proposition have connected skeletons 
(this can also be seen from Eq. (3.6)). On the other hand, the following 
theorem is an immediate consequence of Theorem 10 in Section 5: 

Theorem 9. YC(z) = 0 if z ~< 1/42. 

4.2. Remarks 

Let zc=max{zL~C(z)=0}. Since ~C(z) is strictly positive if z > I 
there is a non-analyticity in NC(z) at Zc. This non-analyticity signals a 
phase transition in this model. A schematic diagram of xc(z) is illustrated 
in Fig. 7. 4 The multicritical point at z~. separates two critical curves. The 
straight line for z < zc corresponds to surfaces with low degree of folding. 
If one argues as at the end of Section 2, then this is a phase of smooth sur- 
faces, possibly inflated. On the other hand, the line of transitions for z > z c 
is a phase of branched polymers, (which could be inflated, as suggested by 
the results in Section 3). I conjecture that the multicritical point is tricriti- 
cal. Lastly, observe that ( l /n)  log GC,,'(z) is a convex function of log z which 
converges to the convex function (of log z) ~C(z) as n --* oo. The "density 

4 This figure might  be misleading, i have assumed that  x, . (z)  has a cont inuous first derivative 
at z,.. This is of course not  necessarily true, the derivative could be discontinuous (indicated 
by the dotted curve), as it was found in the case of 2 dimensional vesicles (fisher et  al. 
1991). r 
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Fig. 7. 

0. 

0 > 
0 z~ z 

The conjectured phase diagram of surfaces with connected skeletons. 

of folds" can be defined as before by the derivative lim, ~ ~ (  l)/n = limn_ 
(d/dlog z)(1/n)log GC(z) (if it exists). As argued in the remarks in 3.4, it is 
apparent  that if z < zc, then limn ~ o~( l)/n = 0. On the other hand, if z > z~, 
then lim inf. ~ ~ (  l)/n > 0. ~31) 

We now prove Theorem 9 by generalising it to random objects in ~f3 
of arbitrary nature: 

T h e o r e m  10. Let u,(k) be the number  of objects with k "defects" 
and "size" n, where k<~ V(n) and V(n)--+ vn as n--+ oo for some constant 
v > 0 .  Define un(~<k)=Zl.<~ un(l). Suppose that the objects can be con- 
catenated such that the following two super-multiplicative relations are 
true: 

Un(~k)~lm(~l )~  y, Un+m+c(~k+l-+-i ) (4 .6)  
a~i~b 

k 

u,,(k- l) Urn(l) <~ ~. U, +m +f(k + i) (4.7) 
l=0 d~i~e 

where {a, b, c, d, e, f }  are constants. Furthermore,  suppose that there 
exists a k > 1 such that u~(k) <~ K n. Then the following statements are true: 
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(1) There exists a finite, monotonic, log-concave and non-decreasing 
function r on the interval [0, v], such that 

log ~/(e) = lim 1 log u.(<~en) 
n ~ o o  n 

and we define ~k(O) = ~k(O +) and O(v) = ~k(v ). 

(2) If there exists a finite constant C >  1 such that 

log ~(e) -- log ~(0 + ) 
lim sup ~< log C 

C c ~ O  + 

then the radius of convergence, xo(z), of the generating function in x, 
G~ z) = E ,  •l u,,(l) zlx n, is a continuous function of z e (0, ~ )  and 
xo(z) = (~(0 +)) -1 for all 0 < z < 1/C. 

Proof. Statement (1) follows from the same line of arguments leading 
from Eq. (2.6) (equivalent to Eq. (4.6)) to Propositions 2 and Eq. (2.10). 
Continuity of xo(z) follows from existence and convexity and continuity of 
the free energy ( - l o g  xo(z)), starting from Eq. (4.7) and following the line 
of arguments in Ref. 1 leading to Proposition 4. From (1) it is apparent 
that u,,(<~en) = [~b(e)] "+~ Since log ~/,(e) ~<log ~/,(0 +) + e  log C by con- 
cavity and the bound on the limsup above, one obtains 

q, < [0(0 +) c'/"]" = [440+)]" c '  

Thus 

a~ z) = E Y~ Un(I) z:x" 
n l ~ F V ( n ) 7  

-<Y~ E [~(t/n)] ~ [~(0+)]" C'z'x" 
n l < ~ F V ( n ) 7  

Since O(I/n) is non-decreasing, note that O(1/n)<<. O(v). If z < 1/C, then the 
generating function is finite if x < [ O ( 0 + ) ]  -1. Consequently, Xo(Z)>~ 
[~(0+) ]  1 if z <  1/C. On the other hand, if z <  1, then G~ z) >~Zn un 
(<.[-OnT) zL~nJxn, and by taking 6 ~ 0 +, one obtains xo(z ) <<. [~ (0+) ]  i. 
H e n c e x 0 ( z ) = [ O ( 0 + ) ]  l i f 0 < z < l / C .  I 

Theorem 10 can be applied to surfaces with connected skeletons: in 
that case C = 42 and ~9(0 +) = 1. These choices give Theorem 9. 
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5. CONCLUSIONS 

In this paper I used a rigorous approach to explore the phase diagram 
for surfaces with a "crumpling" fugacity. In particular, I proved a variety 
of bounds on if(z);  the most interesting being the fact that ~- (z )>  0 for 
positive z. Numerical simulations of this model ref. 2 strongly suggested 
that i f (z )  might be identically zero for small enough z, but this possibility 
is now ruled out. 5 It is important to note that the results in this paper do 
not rule out a critical point in the phase diagram corresponding to a 
"crumpling transition". 

In Section 4 1 considered a restricted set of surfaces (those with connected 
skeletons). In this model it is indeed possible, through the use of a bound 
derived from the number of lattice animals, to prove that the free energy is 
zero for small enough (but positive) z. The phase diagram is given by Fig. 7, 
and there exists at least one non-analyticity in the corresponding limiting free 
energy. One cannot be sure that this non-analyticity corresponds to a "crum- 
pling transition", but I conjecture this to be a tricritical point separating a 
line of first order transitions (to surfaces with low degree of folding), from a 
line of second order transitions (to a branched polymer phase consisting of 
surfaces with high degree of folding). It is not clear that this non-analyticity 
is "cancelled" when surfaces with disconnected skeletons are added back into 
the partition function. Thus, if one can prove that surfaces with disconnected 
skeletons only adds a term or a factor which is analytic at zc to ~ C ( z )  (to give 
~-(z)), then there is a non-analyticity in i f (z )  at z c as well. This seems a very 
appealing (but challenging) possible course of investigation. (Of course, if 
adding back the surfaces with disconnected skeletons changes the value of z c, 
then this argument would not work as proposed here). 
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